COS 423                                  Problem Set No. 2                                          Due Wed. 3/8

Spring 2006

1. (See Kleinberg and Tardos, Chapter 2, ex. 8.)  You are doing some stress-testing on various models of glass jars to determine the height from which they can be dropped and still not break.  The setup for this experiment, on a particular type of jar, is as follows.  You have a ladder with
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rungs, and you want to find the highest rung from which you can drop a copy of the jar and not have it break.  We call this the highest safe rung.
It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and then recursively try from rung 
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or 
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 depending on the outcome.  But this has the drawback that you could break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you could try the following strategy.  Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher each time until the jar breaks.  In this way, you only need a single jar – at the moment it breaks, you have the correct answer – but you may have to drop it 
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times (rather than 
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as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if you are willing to break more jars.  To study this trade-off, let
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be the number of jars you are given, and let 
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be the actual highest safe rung.  Give a bound on the number of drops needed to find the highest safe rung, as a function of 
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and 
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  Your goal is to make this number as small as possible.  Describe a corresponding strategy for finding the highest safe rung.  Hint: consider the case 
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 and then think about what happens when
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 increases.  Try writing a recurrence for the minimum number of drops as a function of 
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 and 
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and then solving it, or at least giving bounds on its value.

2. (See Kleinberg and Tardos, Chapter 3, ex.11.) You are helping some security analysts monitor a collection of networked computers tracking the spread of an online virus.  There are 
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computers in the system, labeled 
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and as input you are given a collection of trace data indicating the times at which pairs of computers communicated.  Thus the data is a sequence of ordered triples 
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such a triple indicates that 
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exchanged bits at time
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 There are
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triples total.  We will assume that the triples are presented to you in sorted order of time.

The security analysts you are working with would like to be able to answer questions of the following form: if the virus was inserted into computer 
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at time 
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could it possibly have infected computer 
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by time
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  The mechanics of infection are simple: if an infected computer 
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exchanges bits with an uninfected computer 
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at time 
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 (that is, if either of the triples 
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 appears in the trace data) then 
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becomes infected as well, starting at time
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 Infection can thus spread from one machine to another through a sequence of communications, which must happen in non-decreasing order of time.  Describe an 
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algorithm which, given an initial infection of a computer 
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 at time 
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determines for each other computer the earliest time at which it can become infected.  Your algorithm should keep track of enough information so that, for any computer 
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 it is possible to retrieve in 
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time a sequence of communications by which
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could have become infected.

3. (See Kleinberg and Tardos, Chapter 4, ex. 6.) Your friend is working as a camp counselor, and she is in charge of organizing activities for a set of campers.  One of her plans is a mini-triathlon exercise: each contestant must swim 20 laps of a pool, then bike 10 miles, then run 3 miles.  The plan is to send the contestants out in a staggered fashion, via the following rule: the contestants must use the pool one at a time.  In other words, first one contestant swims the 20 laps, gets out, and starts biking.  As soon as this first person is out of the pool, a second contestant begins swimming the 20 laps; as soon as he or she is out and starts biking, a third contestant begins swimming, and so on.

Each contestant has a projected swimming time, biking time, and running time.  Your friend wants to decide on a schedule for the triathlon; namely, an order in which to sequence the starts of the contestants, so as to minimize the completion time of the event, the time when all contestants are done.  Again, at most one person can swim at a time, but any number can be running or biking at the same time.  What is the best order for sending people out if one wants the whole competition to be over as early as possible (assuming the projected times of all contestants are accurate)?  More precisely, give an efficient algorithm that produces a schedule whose completion time is as small as possible.

4. (Kleinberg and Tardos, Chapter 4, ex.30) Let 
[image: image38.wmf]G=(V,E)

be a graph with 
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nodes in which each pair of nodes is joined by an edge. There is a positive weight 
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on each edge 
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and we will assume these weights satisfy the triangle inequality 
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 For a subset 
[image: image43.wmf],

VV

¢

Í

 we will use 
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to denote the subgraph (with edge weights) induced on the nodes in 
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We are given a set 
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terminals that must be connected. We say that a Steiner Tree on 
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 is a set 
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so that 
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together with a spanning subtree 
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of 
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 The weight of the Steiner tree is the weight of the tree 
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Show that the problem of finding a minimum-weight Steiner tree on 
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can be solved in time 
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5. (Kleinberg and Tardos, Chapter 4, ex. 31) Let’s go back to the original motivation for the Minimum Spanning Tree Problem. We are given a connected, undirected graph 
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with positive edge lengths 
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and we want to find a spanning subgraph of it. Now suppose we are willing to settle for a subgraph 
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that is “denser” than a tree, and we are interested in guaranteeing that, for each pair of vertices 
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the length of the shortest 
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path in 
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is not much longer than the length of the shortest 
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 By the length of a path 
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here, we mean the sum of 
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over all edges 
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Here is a variant of Kruskal’s Algorithm designed to produce such a subgraph.

· First we sort all the edges in order of increasing length. (You may assume all edge lengths are distinct.)

· We then construct a subgraph 
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by considering each edge in order.

· When we come to edge 
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we add 
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to the subgraph 
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if there is currenly no 
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 (This is what Kruskal’s Algorithm would do as well.) On the other hand, if there is a 
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denote the length of the shortest such path in
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again length is with respect to the values 
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 We add 
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In other words, we add an edge when 
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and 
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are already in the same connected component, provided that the addition of the edge reduces their shortest-path distance by a sufficient amount.


Let 
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be the subgraph of 
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returned by the algorithm.

(a) Prove that for every pair of nodes 
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the length of the shorthest 
[image: image87.wmf]uv

-

path in 
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is at most three times the length of the shortest 
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(b) Despite its ability to approximately preserve shortest-path distances, the subgraph 
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produced by the algorithm cannot be too dense. Let 
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denote the maximum number of edges that can possibly be produced as the output of this algorithm, over all 
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input graphs with edge lengths. Prove that
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